Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Med ; 78(2): 312-327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143256

RESUMO

Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-ß-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-ß-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Edaravone/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Flavonoides/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Oxigênio , Lesões Encefálicas/tratamento farmacológico
2.
J Nat Med ; 77(3): 544-560, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115470

RESUMO

This study aimed to investigate the neuroprotective and therapeutic effects of Diospyros kaki L.f. leaves (DK) on transient focal cerebral ischemic injury and underlying mechanisms using a middle cerebral artery occlusion (MCAO) model of mice. The animals received the MCAO operation on day 0. The daily administrations of DK (50 and 100 mg/kg, p.o) and edaravone (6 mg/kg, i.v), a reference drug with radical scavenging activity, were started 7 days before (pre-treatment) or immediately after the MCAO operation (post-treatment) and continued during the experimental period. Histochemical, biochemical, and neurological changes and cognitive performance were evaluated. MCAO caused cerebral infarction and neuronal cell loss in the cortex, striatum, and hippocampus in a manner accompanied by spatial cognitive deficits. These neurological and cognitive impairments caused by MCAO were significantly attenuated by pre- and post-ischemic treatments with DK and edaravone, suggesting that DK, like edaravone, has therapeutic potential for cerebral ischemia-induced brain damage. DK and edaravone suppressed MCAO-induced changes in biomarkers for apoptosis (TUNEL-positive cell number and cleaved caspase-3 protein expression) and oxidative stress (glutathione and malondialdehyde contents) in the brain. Interestingly, DK, but not edaravone, mitigated an increase in blood-brain permeability and down-regulation of vascular endothelial growth factor protein expression caused by MCAO. Although the exact chemical constituents implicated in the effects of DK remain to be clarified, the present results indicate that DK exerts neuroprotective and therapeutic activity against transient focal cerebral ischemia-induced injury probably by suppressing oxidative stress, apoptotic process, and mechanisms impairing blood-brain barrier integrity in the brain.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Animais , Flavonoides/farmacologia , Fator A de Crescimento do Endotélio Vascular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Apoptose , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
3.
Clin Exp Hypertens ; 44(5): 411-418, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442839

RESUMO

OBJECTIVES: This study aims to investigate the anti-hypertensive effects of aqueous extract of Callisia fragrans and their underlying mechanism using a two-kidney one-clip (2K1C) model of reno-vascular hypertension in rats. METHODS: The reno-vascular hypertensive rats were treated with C. fragrans leaf extract (100 and 500 mg/kg; p.o.) and a reference drug, captopril (20 mg/kg; p.o.), for 4 weeks. The blood pressure and heart rate were recorded using a tail-cuff. The heart weight, left ventricular wall thickness, and serum creatinine and urea levels were measured. A spectrophotometric assay was used to analyze the angiotensin-converting enzyme (ACE) inhibition activity of the extract and the reference drug. The total volume and the concentration of sodium, potassium, and chloride in urine samples were evaluated. RESULTS: C. fragrans extract significantly reduced both systolic and diastolic blood pressures in the reno-vascular hypertensive rats. No significant difference in the heart rate was observed between each animal group. C. fragrans extract reduced the 2K1C-induced increase in the heart and body weight ratio and the left ventricular wall thickness. Moreover, the extract also attenuated the increase in serum urea induced by the 2K1C treatment. C. fragrans extract inhibited ACE activity in vitro with an IC50 of 20.97 ± 3.94 µg/ml. The urine output and urinary electrolyte excretion significantly increased in C. fragrans extract-treated rats. CONCLUSIONS: These findings demonstrated that C. fragrans extract can mitigate hypertension and alleviate ventricular hypertrophy and renal dysfunction in reno-vascular hypertensive rats, at least in part via ACE activity inhibition and diuretic property.


Assuntos
Hipertensão Renovascular , Hipertensão , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Hipertensão/tratamento farmacológico , Rim , Ratos , Ureia
4.
J Nat Med ; 76(3): 621-633, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218459

RESUMO

This study aims to clarify the bioactive constituents responsible for the anti-dementia effects of Ocimum sanctum Linn. ethanolic extract (OS) using olfactory bulbectomized (OBX) mice, an animal model of dementia. The effects of OS or its extract further fractionated with n-hexane (OS-H), ethyl acetate (OS-E), and n-butanol (OS-B) on the spatial cognitive deficits of OBX mice were elucidated by the modified Y-maze tests. The effects of the major constituents of the most active OS fraction were also elucidated using the reference drug donepezil. The administration of OS and OS-E ameliorated the spatial cognitive deficits caused by OBX, whereas OS-H or OS-B had no effect. Two major constituents, ursolic acid (URO) and oleanolic acid (OLE), and three minor constituents were isolated from OS-E. URO (6 and 12 mg/kg) and OLE (24 mg/kg) attenuated the OBX-induced cognitive deficits. URO (6 mg/kg) and donepezil reversed the OBX-induced down-regulation of vascular endothelial growth factor (VEGF) and choline acetyltransferase expression levels in the hippocampus. URO inhibited the ex vivo activity of acetylcholinesterase with similar efficacy to donepezil. URO inhibited the in vitro activity of acetylcholinesterase (IC50 = 106.5 µM), while the effects of OS, OS-E, and other isolated compounds were negligible. These findings suggest that URO and OLE are responsible for the anti-dementia action of OS extract, whereas URO possesses a more potent anti-dementia effect than its isomer OLE. The effects of URO are, at least in part, mediated by normalizing the function of central cholinergic systems and VEGF protein expression.


Assuntos
Ocimum sanctum , Ácido Oleanólico , Acetilcolinesterase , Animais , Donepezila , Camundongos , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Bulbo Olfatório/cirurgia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Triterpenos , Fator A de Crescimento do Endotélio Vascular
5.
Artigo em Inglês | MEDLINE | ID: mdl-34306149

RESUMO

This study aimed to clarify the antidementia effects of ethanolic extract of Ocimum sanctum Linn. (OS) and its underlying mechanisms using olfactory bulbectomized (OBX) mice. OBX mice were treated daily with OS or a reference drug, donepezil (DNP). Spatial and nonspatial working memory performance was measured using a modified Y maze test and a novel object recognition test, respectively. Brain tissues of the animals were subjected to histochemical and neurochemical analysis. OS treatment attenuated OBX-induced impairment of spatial and nonspatial working memories. OBX induced degeneration of septal cholinergic neurons, enlargement of the lateral ventricles, and suppression of hippocampal neurogenesis. OS and DNP treatment also depressed these histological damages. OS administration reduced ex vivo activity of acetylcholinesterase in the brain. OBX diminished the expression levels of genes coding vascular endothelial growth factor (VEGF) and VEGF receptor type 2 (VEGFR2). Treatment with OS and DNP reversed OBX-induced decrease in VEGF gene and protein expression levels without affecting the expression of the VEGFR2 gene. These results demonstrate that the administration of OS can lessen the cognitive deficits and neurohistological damages of OBX and that these actions are, at least in part, mediated by the enhancement of central cholinergic systems and VEGF expression.

6.
Neurochem Res ; 46(8): 1995-2007, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950474

RESUMO

Autism spectrum disorders (ASD) have heterogeneous etiologies involving dysfunction of central nervous systems, for which no effective pan-specific treatments are available. Ilex kudingcha (IK) C.J. Tseng is a nootropic botanical used in Asia for neuroprotection and improvement of cognition. This study establishes that a chemically characterized extract from IK (IKE) mitigates behavioral traits in the Drosophila melanogaster rugose mutant, whose traits resemble human ASD, and examines possible mechanisms. IKE treatment significantly ameliorated deficits in social interaction, short-term memory, and locomotor activity in Drosophila rugose, and significantly increased synaptic bouton number of size more than 2 µm2 in the neuromuscular junctions (NMJs) of Drosophila rugose. To clarify mechanism(s) of IKE action, methylphenidate (MPH), a dopamine transporter inhibitor, was included as a reference drug in the behavioral assays: MPH significantly improved social interaction and short-term memory deficit in Drosophila rugose; administration of the dopamine D1 receptor antagonist SCH23390 and dopamine D2 receptor antagonist sulpiride reversed the ameliorative effects of both MPH and IKE on the social interaction deficits of Drosophila rugose. To extend analysis of IKE treatment to the vertebrate central nervous system, ASD-associated gene expression in mouse hippocampus was studied by RNA-seq: IKE treatment altered the expression of genes coding phosphoinositide 3-kinases/protein kinase B (PI3K-Akt), proteins in glutamatergic, dopaminergic, serotonergic, and GABAergic synapses, cAMP response element-binding protein (CREB), and RNA transporter proteins. These results provide a foundation for further analysis of IKE as a candidate for treatment of some forms of ASD.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Nootrópicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Transtorno do Espectro Autista/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Drosophila melanogaster/genética , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Ilex/química , Locomoção/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Metilfenidato/uso terapêutico , Fenótipo , Folhas de Planta/química , Terminações Pré-Sinápticas/efeitos dos fármacos , Interação Social/efeitos dos fármacos , Vietnã
7.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397562

RESUMO

Bacopa monnieri L. Wettst. (BM) is a botanical component of Ayurvedic medicines and of dietary supplements used worldwide for cognitive health and function. We previously reported that administration of BM alcoholic extract (BME) prevents trimethyltin (TMT)-induced cognitive deficits and hippocampal cell damage and promotes TMT-induced hippocampal neurogenesis. In this study, we demonstrate that administration of BME improves spatial working memory in adolescent (5-week- old) healthy mice but not adult (8-week-old) mice. Moreover, improved spatial working memory was retained even at 4 weeks after terminating 1-week treatment of adolescent mice. One-week BME treatment of adolescent mice significantly enhanced hippocampal BrdU incorporation and expression of genes involved in neurogenesis determined by RNAseq analysis. Cell death, as detected by histochemistry, appeared not to be significant. A significant increase in neurogenesis was observed in the dentate gyrus region 4 weeks after terminating 1-week treatment of adolescent mice with BME. Bacopaside I, an active component of BME, promoted the proliferation of neural progenitor cells in vitro in a concentration-dependent manner via the facilitation of the Akt and ERK1/2 signaling. These results suggest that BME enhances spatial working memory in healthy adolescent mice by promoting hippocampal neurogenesis and that the effects of BME are due, in significant amounts, to bacopaside I.


Assuntos
Bacopa/química , Giro Denteado/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Memória de Curto Prazo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Nootrópicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Memória Espacial/efeitos dos fármacos , Animais , Células Cultivadas , Replicação do DNA/efeitos dos fármacos , Giro Denteado/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ayurveda , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/fisiopatologia , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/genética , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , RNA-Seq , Saponinas/farmacologia , Maturidade Sexual , Transdução de Sinais/efeitos dos fármacos , Compostos de Trimetilestanho/toxicidade , Triterpenos/farmacologia
8.
Biol Pharm Bull ; 42(8): 1384-1393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366873

RESUMO

We previously demonstrated that Bacopa monnier (L.) WETTST. extract (BME) ameliorated cognitive dysfunction in animal models of dementia by enhancing synaptic plasticity-related signaling in the hippocampus and protecting cholinergic neurons in the medial septum. To further clarify the pharmacological features and availability of BME as a novel anti-dementia agent, we investigated whether BME affects neuronal repair using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampus. Mice pretreated with TMT (2.8 mg/kg, intraperitoneally (i.p.)) on day 0 were given BME (50 mg/kg, per os (p.o.)) once daily for 15-30 d. Cognitive performance of the animals was elucidated twice by the object location test and modified Y maze test on days 17-20 (Phase I) and days 32-35 (Phase II) or by the passive avoidance test on Phase II. TMT impaired hippocampus-dependent spatial working memory and amygdala-dependent fear-motivated memory. The administration of BME significantly prevented TMT-induced cognitive deficits. The protective effects of BME on the spatial memory deficits were confirmed by Nissl staining of hippocampal tissues and propidium iodide staining of organotypic hippocampal slice cultures. Immunohistochemical studies conducted on days 17 and 32 revealed that thirty days of treatment with BME increased the number of 5-bromo-2'-deoxyuridine (BrdU)-immunopositive cells in the dentate gyrus region of TMT-treated mice, whereas fifteen days of treatment with BME had no effect. These results suggest that BME ameliorates TMT-induced cognition dysfunction mainly via protecting the hippocampal neurons from TMT-induced hippocampal lesions and partly via promoting neuroregeneration in the dentate gyrus regions.


Assuntos
Bacopa , Disfunção Cognitiva/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Compostos de Trimetilestanho
9.
J Ethnopharmacol ; 164: 37-45, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25660331

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacopa monnieri (L.) Wettst. (BM) is a medicinal plant which has been not only used as a traditional medicine to improve intelligence and memory but also taken as vegetables in Vietnam for a long time. We previously demonstrated that Bacopa monnieri (BM) alcohol extract attenuated olfactory bulbectomy-induced cognitive deficits and the deterioration of septo-hippocampal cholinergic neurons, suggesting the beneficial effects of BM for dementia patients. AIM OF STUDY: The present study was conducted to further clarify the anti-dementia effects of BM, using transient 2 vessels occlusion (T2VO)-induced cognitive deficits in mice, an animal model of vascular dementia, and also to investigate the constituent(s) contributing to the actions of BM, using oxygen- and glucose-deprivation (OGD)-induced hippocampal cell damage as an in vitro model of ischemia. MATERIALS AND METHODS: In the in vivo experiments, T2VO mice were treated daily with a standardized BM extract (50mg/kg, p.o.) 1 week before and continuously 3 days after surgery. In the in vitro experiments, organotypic hippocampal slice cultures (OHSCs) were incubated with triterpenoid saponins from BM (bacosides) or MK-801 1h before and during a 45-min period of OGD. Neuronal cell damage in OHSCs was analyzed by measurement of propidium iodide uptake 24h after OGD. RESULTS: The BM treatment significantly ameliorated T2VO-induced impairments in non-spatial short term memory performance in the object recognition test. Among the bacosides tested in the in vitro experiments using OHSCs, bacopaside I (25 µM) exhibited potent neuroprotective effects against OGD-induced neuronal cell damage. Double staining with TUNEL and PI revealed that OGD caused necrosis and apoptosis and that bacopaside I attenuated the effects of OGD. The neuroprotective effects of bacopaside I were blocked by the PKC inhibitor Ro-31-8220 and PI3K inhibitor LY294002, but not by the ERK inhibitor U0126. OGD reduced the level of phospho-Akt (p-Akt), an anti-apoptotic factor, in OHSCs. This decrease was reversed by bacopaside I. Moreover, the treatment with bacopaside I itself was able to elevate the level of p-Akt in OHSCs. CONCLUSION: These results suggest that BM was beneficial for the prevention of cognitive deficits related to cerebral ischemia and also that bacopaside I, via PKC and PI3K/Akt mechanisms, played a role in the neuroprotective effects of BM observed in the mouse model.


Assuntos
Bacopa , Demência Vascular/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Demência Vascular/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Isquemia/complicações , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
10.
Neurochem Int ; 75: 39-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24911952

RESUMO

In our previous study, elevation of endogenous acetylcholine (ACh) by tacrine (THA) rescued NMDA-induced long-lasting hippocampal cell damage via muscarinic M1 receptors. However, the detailed molecular mechanism underlying the effect of ACh is unclear. This study investigated possible involvement of the VEGF signaling system in the rescuing effect of ACh on N-methyl-d-aspartate (NMDA)-induced long-lasting hippocampal cell damage using organotypic hippocampal slice cultures (OHSCs). As previously reported, NMDA pretreatment caused long-lasting hippocampal cell damage in OHSCs in a manner reversible by treatment with THA. The protein kinase C (PKC) inhibitor Ro31-8220, but not the extracellular signal-regulated kinase (ERK) inhibitor U0126, dose-dependently and almost completely abolished the effect of THA. The rescuing effect of THA was also partially but significantly blocked by Ki8751, a selective inhibitor of type 2 vascular endothelial growth factor (VEGF) receptor (VEGFR-2) tyrosine kinase. NMDA pretreatment elevated the expression level of HIF1α, whereas it decreased the expression of VEGF-A. Moreover, NMDA pretreatment reduced the level of phosphorylated VEGFR-2 without apparently affecting the level of VEGFR-2 or ß-actin. These NMDA pretreatment-induced changes were significantly attenuated by THA treatment. Immunohistochemical analysis conducted 6days after NMDA pretreatment revealed that VEGF-A and VEGFR-2 were mainly expressed on astrocytes and neurons, respectively, in OHSCs. In OHSCs pretreated with NMDA, THA treatment induced a morphological and activation-related change in astrocytes expressing VEGF-A. The present results demonstrate that endogenous acetylcholine plays a rescuing role towards excitotoxicity-induced long-lasting hippocampal cell damage in part via paracrine VEGF signaling between astrocytes and hippocampal neurons or autocrine VEGF signaling in hippocampal neurons in OHSCs.


Assuntos
Acetilcolina/fisiologia , Hipocampo/efeitos dos fármacos , N-Metilaspartato/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Hipocampo/citologia , Hipocampo/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos ICR , Proteína Quinase C/metabolismo
11.
Neurochem Res ; 38(10): 2201-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23949198

RESUMO

This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.


Assuntos
Bacopa/química , Transtornos da Memória/tratamento farmacológico , Bulbo Olfatório/fisiologia , Extratos Vegetais/uso terapêutico , Acetilcolinesterase/metabolismo , Estimulação Acústica , Animais , Colina O-Acetiltransferase/biossíntese , Colina O-Acetiltransferase/metabolismo , Medo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Fitoterapia , Escopolamina/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...